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Abstract
Purpose – This study aims to at numerically retrieve five constant dimensional thermo-physical properties
of a biological tissue from dimensionless boundary temperature measurements.
Design/methodology/approach – The thermal-wave model of bio-heat transfer is used as an
appropriate model because of its realism in situations in which the heat flux is extremely high or low and
imposed over a short duration of time. For the numerical discretization, an unconditionally stable finite
difference scheme used as a direct solver is developed. The sensitivity coefficients of the dimensionless
boundary temperature measurements with respect to five constant dimensionless parameters appearing in a
non-dimensionalised version of the governing hyperbolic model are computed. The retrieval of those
dimensionless parameters, from both exact and noisy measurements, is successfully achieved by using a
minimization procedure based on the MATLAB optimization toolbox routine lsqnonlin. The values of the
five-dimensional parameters are recovered by inverting a nonlinear system of algebraic equations connecting
those parameters to the dimensionless parameters whose values have already been recovered.
Findings – Accurate and stable numerical solutions for the unknown thermo-physical properties of a
biological tissue from dimensionless boundary temperature measurements are obtained using the proposed
numerical procedure.
Research limitations/implications – The current investigation is limited to the retrieval of constant
physical properties, but future work will investigate the reconstruction of the space-dependent blood
perfusion coefficient.
Practical implications – As noise inherently present in practical measurements is inverted, the paper is
of practical significance andmodels a real-world situation.
Social implications – The findings of the present paper are of considerable significance and interest to
practitioners in the biomedical engineering andmedical physics sectors.
Originality/value – In comparison to Alkhwaji et al. (2012), the novelty and contribution of this work are
as follows: considering the more general and realistic thermal-wave model of bio-heat transfer, accounting for
a relaxation time; allowing for the tissue to have a finite size; and reconstructing five thermally significant
dimensional parameters.
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1. Introduction
The knowledge of the spatio-temporal temperature profile of a living biological tissue is
vital for various biomedical applications, including cancer treatment using cryosurgery
or hyperthermia therapy in which the elimination of cancer cells is maximized and the
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damage to the surrounding healthy tissue is minimized (Zhang et al., 2017). In addition,
direct measurements of the thermal properties often fail because of their high cost,
inefficiency or other technical reasons (Narasimhan and Sadasivam, 2013). Thus,
mathematical modelling has become crucial in pre-treatment planning for obtaining the
thermo-physical properties and the temperature distribution of the tissue under
treatment.

In the past few decades, in spite of its simplicity, the Pennes’ bio-heat model (Pennes,
1948), based on the classical Fourier’s law of heat conduction, has attracted considerable
interest for its accurate modelling of a number of applications, including the prediction of
temperature of tumours embedded in healthy tissue (Zhang et al., 2006), the study of thermal
damage caused by burn injury (N�obrega and Coelho, 2017), and the study of the effects of
thermal parameters on the temperature field (Firoozan et al., 2015; Hafid and Lacroix, 2017).
Those studies include the development of closed-form analytical solutions (Gao et al., 1995;
Kengne and Lakhssassi, 2015) and numerical methods (Cao et al., 2010; Chan, 1992; Zhao
et al., 2005). For instance, Kengne and Lakhssassi (2015) solved the parabolic bio-heat
transfer model in spherical coordinates by combining the method of separation of variables
with the Green’s function approach, whereas Chan (1992) numerically solved the steady-
state and transient Pennes’ bio-heat model in two and three dimensions by using the
boundary element method.

On the other hand, little attention has been paid to the study of the thermal-wave model
(Liu et al., 1995), which is a more realistic model for bio-heat transfer in various applications
(Ahmadikia et al., 2012; Liu et al., 1999; Zhukovsky and Srivastava, 2017). For example,
Ahmadikia et al. (2012) and Liu et al. (1999) solved the thermal-wave model of bio-heat
transfer, along with the Pennes’ bio-heat model, with constant and transient heat flux
boundary conditions using the Laplace transform method and the method of separation of
variables, respectively. The paramount importance of the thermal relaxation, accounted for
by the thermal-wave model, has been addressed in several studies (Chester, 1963; Hennessy
et al., 2019; N�obrega and Coelho, 2017), e.g. Chester (1963) for gas dynamics and Hennessy
et al. (2019) for nanoparticle melting. N�obrega and Coelho (2017) studied the prediction of
temperature and thermal damage when a laser is applied for cancer treatment and showed
that the hyperbolic model of interest accurately approximates the physical results observed
in the experimental work of Mitra et al. (1995). Chester (1963) studied the thermal-wave
equation analytically and established an equality between the relaxation time and the
critical frequency, that is, the value above which heat propagates in a wave-like rather than
diffusion-like manner.

Concerning inverse problems for bio-heat transfer, a great deal of numerical
techniques has been proposed to solve inverse problems for the Pennes’ bio-heat model
(Bazán et al., 2017; Cao and Lesnic, 2018; Huntul et al., 2018). However, limited attention
has been given to inverse problems for the thermal-wave model (Hsu, 2006; Lee et al.,
2013; Yang, 2014). For instance, Lee et al. (2013) studied the thermal-wave model and
determined the unknown surface heat flux of a living skin tissue from temperature
measurements in the tissue using the conjugate gradient method coupled with the
discrepancy principle.

In this work, we consider the thermal-wave model whose parameters resemble the
thermo-physical properties of real tissue and blood given in Alkhwaji et al. (2012); Özen et al.
(2008), and attempt to recover five constant thermo-physical parameters as follows: the
blood perfusion rate wb; the thermal contact resistance R00; the thermal conductivity of tissue
k; the relaxation time t ; and the heat capacity of tissue Ct. Such thermo-physical parameters
play fundamental roles in the health of human beings. For instance, the perfusion of blood –
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the volumetric directionless blood flow rate per unit tissue volume – has a significant role
not only for wound healing and tumour spread, but also for the removal of wastes and the
transfer of oxygen and nutrients to cells in biological tissue. In addition, knowing the blood
perfusion, decision-making concerned with the treatment of cancer can be improved and a
better understanding of the mechanisms of thermal damages because of burn injury can be
accomplished. In comparison to Alkhwaji et al. (2012), the novelty and contribution of this
work are as follows:

� considering the more general and realistic thermal-wave model of bio-heat transfer,
accounting for a relaxation time;

� allowing for the tissue to have a finite size; and
� reconstructing five thermally significant dimensional parameters, whereas only two

parameters were recovered in Alkhwaji et al. (2012).

To the best of our knowledge, the recovery of such parameters has not been attempted in the
literature before.

This paper is organized as follows. In Section 1.1, the thermal-wave model of bio-
heat transfer is derived in a generic form along with the Pennes’ bio-heat model. Section
2 introduces the specific model of interest, along with a non-dimensionalised version of
it. In Section 3, an unconditionally stable finite-difference method (FDM) used as a
direct solver is discussed, whereas two numerical optimization techniques for inversion
are introduced and discussed in Section 4, along with a comparison between them. In
Section 5, the sensitivity coefficients of the dimensionless boundary temperature
measurements with respect to five constant non-dimensional parameters are computed.
In Section 6, the retrieval of those dimensionless parameters is obtained using a
minimization procedure based on the MATLAB optimization toolbox routine lsqnonlin,
for exact noisy measurements. Finally, the values of the five dimensional constant
thermo-physical parameters are recovered by inverting a non-linear system of algebraic
equations connecting those parameters to the dimensionless parameters whose values
have already been recovered. The conclusions are drawn in Section 7.

1.1 Derivation of thermal-wave model
When modelling heat transfer in biological bodies, the Pennes’ bio-heat diffusive model may
become inaccurate for processes where a finite velocity of heat propagation occurs. In this
case, a relaxation time is required for a sufficient amount of energy to accumulate and
transfer, as evidenced in the experiments of Bertman and Sandiford (1970), Mitra et al.
(1995); Peshkov (1960).

The assumption of infinite velocity of propagation intuitively means that the
temperature gradient is felt instantaneously at all locations. This assumption is
mathematically described as:

q x; tð Þ ¼ �krT x; tð Þ; (1)

where T is the tissue temperature [8C], q is the heat flux [W m�2], k is the thermal
conductivity of the tissue [Wm�1K–1], x is the distance [m] and t is the time [s].

On the other hand, the heat balance equation reads as (Liu and Xu, 2000; Pennes,
1948):
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r tct
@T
@t

x; tð Þ þ r � q x; tð Þ ¼ wbr bcb Ta � Tð Þ þ Qm x; tð Þ þ Qe x; tð Þ; (2)

where r t and ct represent the density [kg m�3] and specific heat [J kg�1K–1] of the tissue,
respectively, rb and cb represent the density [kg m�3] and specific heat [J kg�1K–1] of the
blood, respectively, wb is the blood perfusion rate [s

–1], andTa is the (constant) arterial blood
temperature [8C]. The heat source or sink wbr bcb(Ta – T), depending on the sign of the
difference Ta – T, is because of blood flow, whereas the heat sources Qm and Qe are because
of metabolism and other external heating, respectively (Liu and Xu, 2000; Pennes, 1948).

Elimination of the heat flux q from the Fourier’s law (1) and the heat balance equation (2)
yields the Pennes’ bio-heat model given by (Pennes, 1948):

r tct
@T
@t

¼ kr2T þ wbr bcb Ta � Tð Þ þ Qm þ Qe: (3)

To account for the finite velocity of propagation observed in bio-heat transfer, Cattaneo
(1958) and Vernotte (1958) independently modified the Fourier’s law of heat conduction (1) to
account for a relaxation time (time-lag) necessary for the creation of heat flux after a
temperature gradient has been imposed. This is mathematically described as:

q x; t þ tð Þ ¼ �krT x; tð Þ; (4)

where t = a/c2 is the relaxation time [s] necessary for the tissue to respond to the heat
perturbation (Özen et al., 2008), a = k/(r tct) stands for the thermal diffusivity of the tissue
[m2 s–1], and c denotes the velocity of thermal waves in the biological tissue [m s–1] (Mitra
et al., 1995).

A first-order Taylor approximation of q in the left-hand side of the modified version of
the Fourier’s law (4) yields that the following:

q x; tð Þ þ t
@q
@t

x; tð Þ ¼ �krT x; tð Þ: (5)

Elimination of the heat flux q from the non-Fourier’s law (5) and the heat balance
equation (2) yields the thermal-wave model of bio-heat transfer (or sometimes called the
Cattaneo–Vernotte equation) given by (Liu et al., 1995; Mochnacki and Tuzikiewicz, 2016):

r tctt
@2T
@t2

þ r tct þ twbr bcbð Þ @T
@t

¼ kr2T þ wbr bcb Ta � Tð Þ þ Qm þ Qe

þ t
@

@t
Qm þ Qeð Þ: (6)

It can be noted that when there is no relaxation time, i.e. t = 0, the thermal-wave hyperbolic
model given above coincides with the Pennes’ bio-heat parabolic model given by equation (3).

The objective of the paper is to investigate the governing hyperbolic partial differential
equation given by equation (6), subject to appropriate initial and boundary conditions, when
some of the physical coefficients are known or unknown. Those unknown coefficients
determining the thermo-physical properties of the tissue and blood are of significance for
surgeons to judge the conditions of their patients before undergoing surgeries (Zhang et al.,
2017).
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The next section introduces the specific model of interest.

2. Mathematical formulation
We consider the physical situation investigated in Alkhwaji et al. (2012) consisting of a
blood perfusion measurement using a combined heat flux and temperature (CHFT)
sensor that is in thermal contact with the skin tissue. In this experiment, a set of air jets
are impinging on the top side of the CHFT sensor creating a sudden increase in
convection, which in turn it gives rise to an increase in heat transfer from the surface of
the tissue through the sensor. The heat flux and temperature at the surface between the
tissue and sensor are measured experimentally as a function of time. As in Alkhwaji
et al. (2012), we assume that the heat transfer is one-dimensional (as the air penetration
depth is small compared to the lateral size of the sensor) and that the heat source
because of metabolism can be neglected (as it is small compared to the typical heat flux
or, if we would be dealing with an ex-vivo tissue). Then, letting L [m] denote the length
of the finite tissue slab and tf [s] a time duration of the thermal process (and assuming,
for simplicity, that there is no other external heat source, i.e. Qe = 0), equation (6)
simplifies into (Özen et al., 2008):

Ctt
@2u

@t2
x; tð Þ þ Ct þ twbCbð Þ @u

@t
x; tð Þ ¼ k

@2u

@x2
x; tð Þ � wbCbu x; tð Þ;

x; tð Þ 2 Qtf :¼ 0;Lð Þ � 0; tfð �; (7)

where Ct: = r tct [J m
� 3K–1] and Cb: = r bcb [J m

�3K–1] are the heat capacity of the tissue and
blood, respectively, and u = T – Ta. As t & 0, equation (7) reduces to the traditional
Pennes’ equation given by equation (3).

The downstream side x= L of the sample tissue is assumed insulated, while at the
surface x= 0 of the tissue there is a convective thermal contact with the ambient
environment. This results in the following boundary conditions:

q 0; tð Þ þ t
@q
@t

0; tð Þ ¼ �k
@u

@x
0; tð Þ ¼ 1

R0 0 u s tð Þ � u 0; tð Þ� �
;

@u

@x
L; tð Þ ¼ 0; t 2 0; tf½ �;

(8)

where u s(t) is the contact skin temperature [8 C] measured by the sensor and R00 is the
thermal contact resistance [m2K W–1], which is the reciprocal of the thermal contact
conductance, or the heat transfer coefficient, between the sensor and the skin tissue. The
first boundary condition in equation (8) represents the generalized Newton’s law (Hennessy
et al., 2019).

Before the thermal process is initiated, the tissue temperature is at steady state. In this
case, the initial conditions, given by equation (11) below, are found by solving the steady-
state form of the governing equation (7), that is, the second-order ordinary differential
equation given by:

k
d2û
dx2

xð Þ ¼ wbCbû xð Þ; x 2 0;Lð Þ; (9)

subject to the mixed boundary conditions:
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�k
dû
dx

0ð Þ ¼ 1
R0 0 u s;0 � û 0ð Þ

� �
;

dû
dx

Lð Þ ¼ 0; (10)

where u s,0 = u s(0) is the steady-state skin contact temperature [8C]. On solving equations (9)
and (10) results in the initial conditions:

u x; 0ð Þ ¼ u s;0

D
e x�2Lð Þ

ffiffiffiffiffiffiffiffiffiffiffi
wbCb=k

p
þ e�x

ffiffiffiffiffiffiffiffiffiffiffi
wbCb=k

ph i
;

@u

@t
x; 0ð Þ ¼ 0; x 2 0;L½ �; (11)

whereD ¼ 1þ R
0 0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wbCb=k

p þ 1� R
0 0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wbCb=k

p� �
e�2L

ffiffiffiffiffiffiffiffiffiffiffi
wbCb=k

p
.

In comparison to the bioheat conduction model of Alkhwaji et al. (2012), our
mathematical formulation is more general and realistic in the sense given as follows: it
allows for the tissue to have a finite size, i.e. L<1; and it incorporates the time-lag t > 0 to
take into account for the finite speed of heat wave propagation. Moreover, in Alkhwaji et al.
(2012), only the thermal contact resistance R00 and the blood perfusion rate wbwere obtained,
whereas in the present study, we attempt to retrieve in addition the tissue’s thermal
conductivity k and heat capacity Ct, along with the relaxation time t .

The next subsection provides the constant thermo-physical properties appearing in
the thermal-wave model given by equations (7), (8) and (11) used to model heat transfer
in the one-layered, one-dimensional tissue slab, as given in Alkhwaji et al. (2012); Özen
et al. (2008).

2.1 Thermo-physical properties
The constant thermo-physical properties of the one-layered, one-dimensional slab of
living biological tissue entering the thermal-wave model given by equations (7), (8) and
(11) are provided in Table 1, as given in Alkhwaji et al. (2012); Özen et al. (2008). In
addition, the piecewise constant skin contact temperature u s(t) for t [ [0,tf], as measured
in Alkhwaji et al. (2012), is shown in Figure 1.

The next subsection presents a non-dimensionalised version of the thermal-wave model
given by equations (7), (8) and (11).

Table 1.
Values of the
constant thermo-
physical properties
from Alkhwaji et al.
(2012), except for t
from Özen et al.
(2008)

Symbol Parameter Value Unit

k Thermal conductivity of the tissue 0.5 Wm�1K–1

r t Density of the tissue 1,050 kg m�3

ct Specific heat of the tissue 3,800 J kg�1K–1

Ct Heat capacity of the tissue, Ct = r tct 3.99� 106 J m�3K–1

r b Density of the blood 1,050 kg m�3

cb Specific heat of the blood 3,800 J kg�1K–1

Cb Heat capacity of the blood, Cb = r bcb 3.99� 106 J m�3K–1

wb Blood perfusion rate 0.04 s– 1

t Relaxation time on the heat flux 20 s
R00 Thermal contact resistance between

the tissue and the environment
0.002 m2KW–1

L Length of the one-layered tissue slab 0.02 m
tf Time duration of the thermal process 60 s

Note: 1W = 1J s–1
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2.2 Dimensionless model
Non-dimensionalization is a useful procedure used in various sub-fields of applied
mathematics such as fluid dynamics, thermoelasticity and heat transfer to remove the units
of variables and to reduce the number of parameters of the models for numerical
convenience.We introduce the following change of variables:

x ¼ x
L
; t ¼ t

tf
; u x; t

� �
¼ u x; tð Þ

u s;0
; u s tð Þ ¼ u s tð Þ

u s;0
: (12)

Then, the dimensionless form of the thermal-wave model given by equations (7), (8) and (11)
(omitting the bars for clarity) can be written as:

@2u

@t2
x; tð Þ þ a1

@u

@t
x; tð Þ ¼ a2

@2u

@x2
x; tð Þ � a3u x; tð Þ; x; tð Þ 2 0; 1ð Þ � 0; 1ð �; (13)

subject to the initial conditions:

u x; 0ð Þ ¼ 1
D

ea5 x�2ð Þ þ e�a5x
� �

;
@u

@t
x; 0ð Þ ¼ 0; x 2 0; 1½ �; (14)

and the mixed boundary conditions:

�a4
@u

@x
0; tð Þ ¼ u s tð Þ � u 0; tð Þ; @u

@x
1; tð Þ ¼ 0; t 2 0; 1½ �; (15)

where:

a1 ¼ tf
t
þ wbCbtf

Ct
; a2 ¼ kt2f

tCtL2 ; a3 ¼ wbCbt2f
tCt

; a4 ¼ R
0 0k
L

; a5 ¼
ffiffiffiffiffiffiffiffiffiffi
wbCb

k

r
L;

(16)

Figure 1.
Skin contact

temperature u s(t) as a
function of the time t

Thermal
properties in a

wave-type
model

5149



www.manaraa.com

and the constantD can be written asD ¼ 1þ a4a5 þ 1� a4a5ð Þe�2a5 .
In the next section, an unconditionally stable FDM used as a direct solver is discussed,

along with a convergence test for verification of the proposed direct solver.

3. Numerical solution of direct problem
Let us consider a generic hyperbolic problem given by:

a
@2u
@t2

x; tð Þ þ b
@u
@t

x; tð Þ ¼ c
@2u
@x2

x; tð Þ � du x; tð Þ þ f x; tð Þ; x; tð Þ 2 Qtf ; (17)

where a, b, c and d are given positive constants, and f is a given force function, subject to the
initial conditions:

u x; 0ð Þ ¼ f xð Þ; @u
@t

x; 0ð Þ ¼ c xð Þ; x 2 0;L½ �; (18)

where f and c are prescribed functions, and the Robin boundary conditions:

a1u 0; tð Þ þ b 1
@u
@x

0; tð Þ ¼ R1 tð Þ; a2u L; tð Þ þ b 2
@u
@x

L; tð Þ ¼ R2 tð Þ; t 2 0; tf½ �;
(19)

where ai and b i= 0 are prescribed constants, andRi are prescribed functions for i = 1, 2.
We introduce an intermediate variable v (Dai and Nassar, 1999) as:

v :¼ aut þ bu; x; tð Þ 2 Qtf ; (20)

then:

vt ¼ cuxx � duþ f x; tð Þ; x; tð Þ 2 Qtf : (21)

From equations (18) and (20), we obtain the initial condition:

v x; 0ð Þ ¼ ac xð Þ þ bf xð Þ; x 2 0;L½ �: (22)

We subdivide the computational domain Qtf into M and N subintervals of equal mesh size
Dx = L/M and uniform time step Dt = tf/N, respectively. At the grid node (xi,tj), we denote
ui,j: = u(xi,tj), vi,j: = v(xi,tj) and fi,j: = f(xi,tj), where xi= iDx and tj= jDt for i ¼ 0;M and j ¼ 0;N .

The Crank–Nicolson method, which is unconditionally stable and second-order accurate,
discretizes equations (20), (21), (18), (22) and (19) as:

ui;jþ1 � ui;j
Dt

¼ 1
2a

vi;j � bui;j þ vi;jþ1 � bui;jþ1
� �

; (23)

vi;jþ1 � vi;j
Dt

¼ 1
2

c

Dxð Þ2
d 2
xui;j � dui;j þ fi;j þ c

Dxð Þ2
d 2
xui;jþ1 � dui;jþ1 þ fi;jþ1

	 

; (24)

i ¼ 0;M ; j ¼ 0; N � 1ð Þ;
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ui;0 ¼ f xið Þ; vi;0 ¼ ac xið Þ þ bf xið Þ; i ¼ 0;M ; (25)

a1u0;j þ b 1
u1;j � u�1;j

2Dx
¼ R1 tjð Þ; a2uM ;j þ b 2

uMþ1;j � uM�1;j

2Dx
¼ R2 tjð Þ; j ¼ 0;N ;

(26)

where u�1;j ¼ u �Dx; tj
� �

and uMþ1;j ¼ u Lþ Dx; tj
� �

for j ¼ 0;N and
d 2
xui;j ¼ ui�1;j � 2ui;j þ uiþ1;j.
Solving equation (23) for vi,jþ1, we obtain the following:

vi;jþ1 ¼ bþ 2a
Dt

	 

ui;jþ1 þ b� 2a

Dt

	 

ui;j � vi;j: (27)

Introducing equation (27) in equation (24), we obtain the following:

�Aui�1;jþ1 þ Bui;jþ1 � Auiþ1;jþ1 ¼ Aui�1;j þ Cui;j þ Auiþ1;j þ 2vi;j þ Dt
2

fi;j þ fi;jþ1
� �

;

(28)

for i ¼ 0;M ; j ¼ 0; N � 1ð Þ, where A ¼ cDt
2 Dxð Þ2 ; B ¼ 2a

Dt þ b
� �

þ cDt
Dxð Þ2 þ

dDt
2 and C ¼

2a
Dt � b

� �
� cDt

Dxð Þ2 þ dDt
2

� �
.

At each time step tjþ1 = (j þ 1)Dt for j ¼ 0; N � 1ð Þ, using the discretized Robin
boundary conditions given by equation (26), the difference equations given by
equations (27) and (28) can be reformulated as a two-step implicit FDM procedure of the
form:

~Lujþ1 ¼ ~Euj þ 2vj þ ~b
j
; (29)

vjþ1 ¼ bþ 2a
Dt

	 

ujþ1 þ b� 2a

Dt

	 

uj � vj ; (30)

where,

uj ¼ u0;j; . . . ; uM ;jð ÞT; vj ¼ v0;j; . . . ; vM ;jð ÞT;
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~L ¼

B� l 1 �2A 0 . . . 0 0 0

�A B �A . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . �A B �A

0 0 0 . . . 0 �2A Bþ l 2

0
BBBBBBBBB@

1
CCCCCCCCCA
;

~E ¼

C þ l 1 2A 0 . . . 0 0 0

A C A . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . A C A

0 0 0 . . . 0 2A C � l 2

0
BBBBBBBBB@

1
CCCCCCCCCA
;

~b
j ¼

Dt
2

f0;j þ f0;jþ1
� �� 2ADx

b 1
R1 tjð Þ þ R1 tjþ1ð Þ� �

Dt
2

f1;j þ f1;jþ1
� �

..

.

Dt
2

fM�1;j þ fM�1;jþ1
� �

Dt
2

fM;j þ fM;jþ1
� �þ 2ADx

b 2
R2 tjð Þ þ R2 tjþ1ð Þ� �

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

and l k ¼ 2akADx
b k

for k= 1, 2.
We next consider a numerical example to verify the convergence and accuracy of the

proposed FDM scheme.
Example. We consider the direct problem (17)-(19) with tf ¼ L ¼ 1; a ¼ b ¼

c ¼ d ¼ 1; ai ¼ b i ¼ 1 for i= 1, 2,

u x; 0ð Þ ¼ f xð Þ ¼ cos pxð Þ þ sin pxð Þ þ 2;
@u
@t

x; 0ð Þ ¼ c xð Þ ¼ cos pxð Þ þ 2; (31)

R1 tð Þ ¼ p þ 3et;R2 tð Þ ¼ et � p ; (32)

and

f x; tð Þ ¼ 3þ p 2ð Þetcos pxð Þ þ 1þ p 2ð Þsin pxð Þ þ 6et: (33)

Then, the analytical solution is given by:

u x; tð Þ ¼ et cos pxð Þ þ 2ð Þ þ sin pxð Þ: (34)
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Figure 2 shows the analytical (34) and numerical solutions obtained
with various mesh sizes M =N [ {10,20,40}. The absolute errors between the exact
and numerical FDM solutions are also included. From this figure, it can be seen
that the convergence of the numerical FDM solution towards the analytical

Figure 2.
Analytical (34) and

numerical FDM
solutions for the

temperature u(x, t) of
the direct problem
(17)-(19) obtained

with various mesh
sizes
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solution (34) is achieved since the absolute error approaches zero as the mesh size is
refined.

In the next section, we introduce two numerical optimization techniques for inversion. In
addition, we numerically simulate the generalized heat flux at x= 0,

�k
@u

@x
0; tð Þ ¼: ~q tð Þ ¼ q 0; tð Þ þ t

@q
@t

0; tð Þ; t 2 0; tf½ �; (35)

by solving the dimensional model given by equations (7), (8) and (11), and the dimensionless
boundary temperatures at x [ {0,1} by solving the dimensionless model given by
equations (13)-(15), to be used as additional measurements for a comparison between the
presented inversion techniques and for the reconstruction of all possible parameters of the
dimensionless model given by equations (13)-(15), respectively.

4. Numerical solution of inverse problems
A discussion of two numerical optimization approaches for inversion is performed in the
next two subsections.

4.1 Graphical approach
The idea of this approach is to visualize the objective function associated with the inverse
problem under consideration and then find its minimum and its corresponding minimizers
graphically. We apply this method for the determination of one or two parameters
simultaneously. As for the reconstruction of more than two parameters, this graphical
method becomes impractical and hence the second inversion approach described next is
more efficient.

4.2 MATLAB optimization toolbox routine lsqnonlin
We employ the MATLAB optimization toolbox routine lsqnonlin, which does not require
supplying by the user the gradient of the objective function associated (Mathworks, 2012).
This routine attempts to find the minimum of a sum of squares by starting from an arbitrary
initial guess. This routine is compiled with the following parameters:

� Algorithm is the Trust Region Reflective (TRR) minimization (Coleman and Li,
1996).

� Maximum number of iterations = 102 � (number of variables).
� Maximum number of objective function evaluations =102 � (number of variables).
� Termination tolerance on the function value = 10�20.
� Solution tolerance = 10�20.
� Lower and upper bounds on the unknowns = 10�10 and 103, respectively.
� Initial guesses for the unknowns = unity.

In the next subsection, we numerically simulate the generalized heat flux (35) of the
dimensional model given by equations (7), (8) and (11), and the dimensionless boundary
temperatures of the dimensionless model given by equations (13)-(15), to be used as
additional measurements for a comparison between the presented inversion techniques
discussed in Sections 4.1 and 4.2, respectively, and for the reconstruction of all possible
parameters of the dimensionless model given by equations (13)-(15), respectively. It is worth
pointing out that, according to equation (35), in the hyperbolic model of bio-heat transfer
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that is considered in this paper, the temperature gradient is not the heat flux q(0, t) but the
generalized heat flux ~q tð Þ :¼ q 0; tð Þ þ t@tq 0; tð Þ (Yu, 2018).

4.3 Exact and noisy measurements
As for as the generalized heat flux used in the inversion of the model parameters as input
data coming from experiment, in practice, it would be actually the heat flux q(0, t) that we
would measure with some error « > 0. Then, we could compute the time-derivative using a
finite-difference approximation with a step size of O ffiffiffi

«
p� �

for stability, and finally, if t is
known, we could have the generalized heat flux ~q tð Þ calculated by adding q(0, t) to t @q

@t 0; tð Þ,
as defined in equation (35). However, in this paper we simulate the data ~q tð Þ numerically by
solving, using the FDM described in Section 3, the direct problem given by equations (7) (8)
and (11), with the model parameters of Table 1, to provide the value of –k@xu (0,t). In any
case, the generalized flux measurements are only used in Section 4.4 to illustrate the
comparison between the two inversion approaches; the real inversion performed in Section 6
uses instead non-destructive testing measurements of the boundary temperature, which are
also practically feasible and realistic. The dimensional generalized heat flux
~q tð Þ ¼ �k@xu 0; tð Þ, and the dimensionless boundary temperatures u (0,t) and u (1,t) are
depicted in Figure 3 for various mesh sizes M ¼ N 2 f160; 320; 640g, showing that
convergent results have been achieved. The dimensional boundary temperatures can easily
be inferred from Figures 3(b) and (c) and equation (12) by multiplying the dimensionless
time t by tf = 60 s and the dimensionless temperature u by u s;0 ¼ 358 C.

In what follows, to avoid committing an inverse crime, we consider the numerically
simulated dimensional generalized heat flux ~q tð Þ, and the dimensionless boundary
temperatures u (0,t) and u (1,t) obtained with M =N = 640 from our FDM direct solver as
input data in the inverse problems of interest, which themselves are solved with a coarser
mesh of Minv = Ninv = 320. Further, as in reality measured data is subject to noise, we
perturb the numerically simulated data by random noise as:

Figure 3.
Plots of the simulated

(a) dimensional
generalized heat flux

~q tð Þ at x= 0, (b)
dimensionless

boundary
temperature u (0,t) at

x= 0, and (c)
dimensionless

boundary
temperature u (0,t) at

x= 1

Thermal
properties in a

wave-type
model

5155



www.manaraa.com

~qe tjð Þ ¼ ~q tjð Þ þ e1j; j ¼ 1;Ninv ; (36)

u e 0; tj
� � ¼ u 0; tj

� �þ e2j; j ¼ 1;Ninv ; (37)

u e 1; tj
� � ¼ u 1; tj

� �þ e3j; j ¼ 1;Ninv ; (38)

where e1j, e2j and e3j are random variables generated from a Gaussian normal distribution
with mean zero and standard deviations s 1, s 2 ands 3, respectively, given by:

s 1 ¼ p�maxj¼1;Ninv
j~q tjð Þj; s 2 ¼ p�maxj¼1;Ninv

ju 0; tj
� �j;

s 3 ¼ p�maxj¼1;Ninv
ju 1; tj
� �j; (39)

where p represents the percentage of noise. We use the MATLAB function normrnd(0, s k,
Ninv) to generate the random variables ekj

� �
j¼1;Ninv

for k= 1, 2, 3.

The relative error (RE%) used to evaluate the accuracy of the numerical results is defined as:

RE bð Þ ¼ jb numerical � b exactj
jb exactj � 100%; (40)

where b numerical denotes the numerically obtained quantity and b exact stands for the true
value of the such quantity, if available. In addition, the average relative error (ERR%) used
to evaluate the total accuracy of the numerical results for the reconstruction of the five
parameters of interest is defined as:

ERR ¼ 1
5

X5
i¼1

jb numerical
i � b exact

i j
jb exact

i j � 100%; (41)

where b numerical
i

� �
i¼1;5

denotes a vector of the numerically obtained quantities and

b exact
i

� �
i¼1;5 stands for a vector of the true values of such quantities, if available.

The next section presents a comparison between the two numerical optimization
approaches discussed in Sections 4.1 and 4.2, respectively, for the reconstruction of one or
two parameters simultaneously.

4.4 Comparison between two inversion approaches
We illustrate the two numerical optimization approaches discussed in Sections 4.1 and 4.2,
respectively, for the reconstruction of one or two parameters simultaneously. We reconstruct
the blood perfusion rate wb alone, as well as the blood perfusion rate wb and the thermal
contact resistance R00 simultaneously from the measured generalized flux ~q tjð Þ for
j ¼ 1;Ninv , whose convergent results have already been shown in Figure 3(a).

The objective functions that we typically minimize for the reconstruction of the blood
perfusion rate wb alone, as well as the blood perfusion rate wb and the thermal contact
resistanceR00 simultaneously are given, respectively, by:
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F1 wbð Þ ¼ 1
s 2

f

XNinv

j¼1

~q tjð Þ � ~qc tj;wbð ÞÞ2;
�

(42)

F2 wb;R
00� �

¼ 1
s 2

f

XNinv

j¼1

~q tjð Þ � ~qc tj;wb;R
0 0

� �
Þ2;

�
(43)

where ~qc denotes the computed generalized flux and s 2
f is the variance of the noise in the

corresponding dimensional generalized flux measurement found using the MATLAB
command var. In the case of noisy measurement, ~q is replaced by ~qe [defined in
equation (36)] in equations (42) and (43).

The convergence of the objective functions F1 and F2 given by equations (42) and (43),
respectively, as functions of the number of iterations, minimized using the MATLAB
optimization toolbox routine lsqnonlin, is depicted in the top-left and lower-left of Figure 4,
respectively, for both exact (i.e. p = 0) and noisy (with p = 1% noise) data, whereas the top-
right and lower-right of the same figure illustrate the graphical approach of Section 4.1
based on simply plotting the objective functions F1 and F2 given by equations (42) and (43),
respectively, for exact data, i.e. p = 0, on linear-log scale for wb 2 0; 0:08½ �s�1 and
R

00 2 1:5; 2:5½ � � 10�3 m2KW–1.
Table 2 shows the exact and recovered values of the blood perfusion rate wb when the

generalized heat flux measurement is noise free or subjected to a noise of level of p = 1%.
The numerical values have been obtained using the two numerical optimization approaches
discussed in Sections 4.1 and 4.2. The initial guess for the unknown blood perfusion rate wb
when using the MATLAB routine lsqnonlin was taken equal to unity. Other details such as
the values of the objective function F1 given by equation (42) at the recovered solutions, the
ideal values of the objective function denoted by F ideal

1 and found by substituting the exact
value of the blood perfusion wb into the direct problem given by equations (7), (8) and (11)

Figure 4.
Objective functions
F1 and F2 given by

(42) and (43),
respectively, as
functions of the

number of iterations,
with p= 1% noise
and without (p= 0)

noise in (36) (left
panel), and the

graphical
representations of the
objective functions on

linear-log scale,
without (p= 0) noise

(right panel)
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and then solving for the generalized heat flux, subsequently used to evaluate the objective
function F1, are also included.

Table 3 shows the exact and recovered values of the blood perfusion rate wb and the
thermal contact resistance R00 when the generalized heat flux measurement is noise-free or
subjected to a noise of level of p = 1%. The numerical values have been obtained using the
two numerical optimization approaches discussed in Sections 4.1 and 4.2. The initial guesses

Table 2.
Recovered values of
the blood perfusion
rate wb and the
relative errors (RE%)

p = 0 p = 1%
Exact Numerical RE (%) Numerical RE (%)

Using the graphical approach
wb 0.04 0.04 0 0.04 0
Value of objective
function F1

1.664� 10–3 1.738

Computational time 9 s 10 s
Sampling box [0, 0.08]
Number of sampling nodes 81

Using the MATLAB optimization toolbox routine lsqnonlin
wb 0.04 0.0399 0.08% 0.0397 0.77%
F ideal
1 1.664� 10–3 1.738

Value of objective
function F1

1.409� 10–3 1.714

Number of iterations 33 31
Computational time 8 s 9 s
Reason of
halting iteration

Norm of current step is less than
step tolerance, 10–20

Table 3.
Recovered values of
the blood perfusion
rate wb and the
thermal contact
resistance R00, and
the relative errors
(RE%)

p = 0 p = 1%
Exact Numerical RE (%) Numerical RE (%)

Using the graphical approach
wb 0.04 0.04 0 0.04 0
R00 0.002 0.002 0 2.012� 10–3 0.6%
Value of objective
function F2

1.664� 10–3 1.732

Computational time 15min 17min
Sampling box [0, 0.08]� [0.0015, 0.0025]
Number of sampling nodes 81� 81

Using the MATLAB optimization toolbox routine lsqnonlin
wb 0.04 0.03995 0.12% 0.0399 0.34%
R00 0.002 1.999� 10–3 0.02% 2.004� 10–3 0.20%
F ideal
2 1.664� 10–3 1.738

Value of objective
function F2

1.399� 10–3 1.713

Number of iterations 66 65
Computational time 21 s 22 s
Reason of
halting iteration

lsqnonlin solver exceeded
function evaluation limit, 200
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for the unknown blood perfusion rate wb and the thermal contact resistance R00 when using
theMATLAB routine lsqnonlinwere taken equal to unity.

Nevertheless, a comparison of the computational time shown in Table 3 for the
simultaneous reconstruction of the blood perfusion rate wb and the thermal contact
resistance R00 using the two numerical optimization approaches discussed in Sections 4.1
and 4.2, respectively, reveals that the graphical method of Section 4.1 becomes inefficient
when two or more parameters have to be estimated. In such a situation, the optimization
approach of Section 4.2 is used, as invoked in Section 6, for the reconstruction of all the five
dimensionless constant parameters aið Þi¼1;5 appearing in the non-dimensionalised model
given by equations (13)-(15). However, prior to this full inversion, in the next section, it is
useful to perform a sensitivity analysis (Beck and Arnold, 1985; Özis�ik and Orlande, 2000) of
the five dimensionless parameters defined in equation (16) appearing in the model given by
equations (13)-(15) to gain an insight into the amount of information contained in the
boundary temperature measurements.

5. Sensitivity analysis
In this section, we perform a sensitivity analysis to gain an insight into which
parameters have the highest influence on the measured boundary temperatures u (0,tj)
and u (1,tj) for j ¼ 1;Ninv . The sensitivity coefficients can be computed by various
approaches, as described in Beck and Arnold (1985); Özis�ik and Orlande (2000), such as
the analytical approach, the boundary value approach and the finite difference
approach. We chose the latest to compute the normalized sensitivity coefficients as it is
the most direct and appropriate approach for the inverse problem considered in this
paper. The normalized sensitivity coefficient of the dimensionless boundary
measurement u (j,t), j [{0,1}, with respect to the parameter g i is defined as (Beck and
Arnold, 1985; Özis�ik and Orlande, 2000):

Sj g ið Þ tð Þ :¼ g i
@u j; tð Þ
@g i

� g i

u j; t; g 1; � � � ; g i þ Dg i; � � � ; g r

� �� u j; t; g 1; � � � ; g i; � � � ; g r

� �
Dg i

;

j 2 f0; 1g; (44)

where Dg i is relatively small, e.g. Dg i = 0.001g i, where g i is the true value of the parameter
considered. In general, the sensitivity coefficients are desired to be large and uncorrelated.

Figures 5 and 6 show the timewise variations of the normalized sensitivity coefficients
S0(ai) and S1(ai) for i ¼ 1; 5 corresponding to the measured dimensionless boundary
temperatures u (0,t) and u (1,t), respectively, obtained using the forward first-order accurate
finite difference defined in equation (44). From Figures 5 and 6, it can be seen that the
normalized sensitivity coefficients are uncorrelated. However, from the left-hand side of
Figure 6, it can be seen that S1(ai) for i ¼ 1; 4 are of O(10�6) hence small, indicating that,
compared to Figure 5 where their counterparts, i.e. S0(ai) for i ¼ 1; 4 are of O(10�1), the
dimensionless temperature measurement at the convective boundary x = 0 contains more
information than themeasurement at the insulated boundary x= 1, see equation (15).

The MATLAB optimization toolbox routine lsqnonlin previously used for the estimation
of one or two parameters in Section 4.4 is used in the next section to recover all the five

Thermal
properties in a

wave-type
model

5159



www.manaraa.com

dimensionless constant parameters aið Þi¼1;5 of the dimensionless model given by
equations (13)-(15), when both the dimensionless boundary temperatures u (0,tj) and u (1,tj)
for j ¼ 1;Ninv are measured free of noise p = 0 or subjected to a noise of level of p = 0.1%.
We do not use the generalized heat flux defined in equation (15) as additional measurement
because its expression depends on the parameter a4 which is unknown.

6. Retrieval of five parameters
We herein reconstruct all the five dimensionless constant parameters a ¼ aið Þi¼1;5
appearing in the dimensionless model given by equations (13)-(15) from the measured
dimensionless boundary temperatures u (0,tj) and/or u (1,tj) for j ¼ 1;Ninv , whose convergent
results have already been shown in Figure 3(b) and (c), respectively.

The objective function that we typically minimize for the reconstruction of all the five
dimensionless parameters a ¼ aið Þi¼1;5 is given by:

Figure 5.
Sensitivity
coefficients for the
dimensionless
boundary
temperature u (0,tj)
for j ¼ 1;Ninv with
respect to the
constant parameters
aið Þi¼1;5

Figure 6.
Sensitivity
coefficients for the
dimensionless
boundary
temperature u (1,tj)
for j ¼ 1;Ninv with
respect to the
constant parameters
aið Þi¼1;4 (left) and a5
(right)
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G að Þ ¼ G0 að Þ þ G1 að Þ

¼ 1
s 2

0

XNinv

j¼1

ðu 0; tj
� �� u c 0; tj;a

� �Þ2 þ 1
s 2

1

XNinv

j¼1

u 1; tj
� �� u c 1; tj;a

� �Þ2;�
(45)

where:

G0 að Þ ¼ 1
s 2

0

XNinv

j¼1

ðu 0; tj
� �� u c 0; tj;a

� �Þ2; (46)

G1 að Þ ¼ 1
s 2

1

XNinv

j¼1

ðu 1; tj
� �� u c 1; tj;a

� �Þ2; (47)

u c(0,tj;a) and u c(1,tj;a) for j ¼ 1;Ninv denote the computed dimensionless boundary
temperatures and s 2

0 and s 2
1 are the variances of the noise in the corresponding boundary

temperature measurements found using the MATLAB command var. In the case of noisy
measurements, u (0,tj) and u (1,tj) are replaced by u «(0,tj) and u «(1,tj) [defined in equations
(37) and (38), respectively], in equations (45)-(47). The initial guesses for the five unknown
dimensionless parameters were taken equal to unity.

Tables 4 and 5 show the exact and recovered values of all the five dimensionless
parameters aið Þi¼1;5 appearing in the dimensionless model given by equations (13)-(15).
Those results have been obtained using the MATLAB optimization toolbox routine
lsqnonlin when the measurements (noise free, i.e. p = 0, or with p = 0.1% noise) are only the
dimensionless boundary temperature at x = 0 minimizing equation (46), the dimensionless
boundary temperature at x = 1 minimizing equation (47), and both the dimensionless
boundary temperatures at x [ {0,1} minimizing equation (45). From Tables 4(a) and 4(b), it
can be seen that the numerical reconstruction of the parameters a2, a4 and a5 are very
inaccurate when measuring only the temperature at x = 0 or x = 1, but a combination of
both in the objective function G given by (45) renders the numerically obtained solution for
all the five constant parameters aið Þi¼1;5 accurate, as seen in Table 5. Clearly, there is not

Table 4.
Recovered values of

the parameters
aið Þi¼1;5 and the

relative errors (RE%)
when the

measurement is only
the dimensionless

boundary (a)
temperature u (0,t) or
(b) temperature u (1,t)

p = 0 p = 0.1%
Exact Numerical RE (%) Numerical RE (%)

(a) When only u (0,t) is measured
a1 5.4 5.3997 5.8� 10–3 5.4052 0.1
a2 0.05639 2.43 4209 3.29 5737
a3 7.2 7.103 1.35 7.089 1.54
a4 0.05 0.335 570 0.394 688
a5 11.299 1.785 84 1.563 86

(b) When only u (1,t) is measured
a1 5.4 5.3999 1.4� 10–3 5.3988 0.02
a2 0.05639 0.87 1442 0.85 1408
a3 7.2 35.29 390 34.54 380
a4 0.05 33.82 67548 33.73 67356
a5 11.299 6.37 44 6.37 44
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enough information when using the individual measurements of u (0,tj) or u (1,tj) for
j ¼ 1;Ninv above and more complementary information is supplied when both these
dimensionless boundary temperatures are measured. Other details such as the values of the
objective function G given by equation (45) at the recovered solutions, the ideal values of
the objective function denoted by Gideal and found by substituting the exact values of
the five non-dimensional components aið Þi¼1;5 into the direct problem given by
equations (13)-(15) and then solving for the dimensionless boundary temperatures,
subsequently used to evaluate the objective functionG, are also included in Table 5.

The convergence of the objective functions G0, G1 and G given by equations (46), (47)
and (45), respectively, as functions of the number of iterations, corresponding the above
three cases, minimized using the MATLAB optimization toolbox routine lsqnonlin, is
depicted in Figure 7, whereas Figure 8 shows the relative errors (RE%) defined in

Table 5.
Recovered values of
the parameters
aið Þi¼1;5 and the
relative errors (RE%)
when both the
dimensionless
boundary
temperatures u (0,t)
and u (1,t) are
measured

p = 0 p = 0.1%
Exact Numerical RE (%) Numerical RE (%)

a1 5.4 5.3991 0.02 5.3949 0.09
a2 0.05639 0.05627 0.21 0.05607 0.56
a3 7.2 7.1878 0.17 7.1671 0.46
a4 0.05 0.04996 0.08 0.04993 0.15
a5 11.299 11.2998 2.3� 10–3 11.3005 8.2� 10–3

Gideal 4.77� 10–3 8.937� 10–2

Value of objective
function G

3.62� 10–3 8.584� 10–2

Number of iterations 83 83
Computational time 53 s 57 s
Reason of
halting iteration

lsqnonlin solver exceeded function
evaluation limit, 500

Figure 7.
Objective functions
G0, G1 andG given by
equations (46), (47)
and (45), respectively,
as functions of the
number of iterations,
corresponding to
measuring (a) only
u (0,t), (b) only u (1,t)
or (c) both u (0,t) and
u (1,t)
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equation (40) for the unknowns aið Þi¼1;5 arising in the dimensionless model given by
equations (13)-(15) when the measurements are both the dimensionless boundary
temperatures at x [ {0,1}. From Figure 7(c) as well as Figure 8, it can be seen that the
objective function G given by (45) and the relative errors (RE%) defined in equation (40), as
functions of the number of iterations, stabilize in about 40 iterations for both exact and noisy
data. Overall from Table 5 and Figure 8, it can be concluded that accurate and stable
numerical results have been successfully achieved for the reconstruction of all the five
dimensionless constant unknowns aið Þi¼1;5 appearing in the dimensionless model given by
equations (13)-(15).

Finally, the values of the dimensional constant parameters wb, R00, k, t and Ct arising in
the thermal-wave model given by equations (7), (8) and (11) can be recovered by inverting
the system of nonlinear equations defined in (16) to obtain:

Figure 8.
The relative error

values (in percentage)
defined in

equation (40)
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t6 ¼
a1tf6tf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a3

q
2a3

; wb6 ¼ a2a25
t2f

t6; R
0 0
6 ¼ a3a4t2f

a2a5ð Þ2LCbt6
;

k6 ¼ a2a5Lð Þ2Cb

a3t2f
t6 and Ct ¼ a2a25Cb

a3
: (48)

From equation (48), it is interesting to observe that the dimensional inverse problem
considered admits mathematically two different solutions (except for the parameter
Ct) whose exact and numerical values are outlined in Table 6, along with the relative errors
(RE%). A similar situation was also previously encountered in (Flouri et al., 2016), where a
dual solution was obtained when solving for a renal two-compartment filtration model using
a transformed linear inversion. The solution found using the formulae with the negative
sign in equation (48) is chosen as the desirable solution according to some prior knowledge
on the values of the thermo-physical parameters available from the literature Alkhwaji et al.
(2012) and Özen et al. (2008).

From the third and fourth columns of Table 6(b), it can be seen that accurate and stable
numerical results have been successfully achieved for the simultaneous reconstruction of all
the five dimensional constant unknowns of interest, arising in the thermal-wave model
given by equations (7), (8) and (11), for noiseless data, i.e. p = 0. In addition, the average
relative error (ERR%) defined in equation (41) is 0.55% for this recovery. Similarly, from the
fifth and sixth columns of Table 6(b), it can be seen that accurate and stable numerical
results have been successfully achieved for the simultaneous reconstruction of all the five-
dimensional constant unknowns when the percentage of noise is p = 0.1%. A comparison
between the fourth and sixth columns of the same table reveals that the presence of
measurement error only alters the accuracy of the recovered values of the unknowns
slightly, as the average relative error (ERR%) defined in equation (41) is only 1.09% for p =
0.1% noise compared to 0.55% for p= 0.

To sum up, the results of Tables 5 and 6(b) and Figure 8 confirm that accurate and stable
numerical reconstruction of all the five thermo-physical dimensional constant parameters
that are, as follows the blood perfusion rate wb; the thermal contact resistance R00; the

Table 6.
Recovered physical
values of wb, R00, k, t
and Ct and the
relative errors (RE%)

p = 0 p = 0.1%
Exact Numerical RE (%) Numerical RE (%)

(a) Solution found using the positive sign in (48)
wbþ 0.05 0.0502 0.48 0.0504 0.83
R00
þ 0.0016 1.592� 10–3 0.51 1.586� 10–3 0.86

kþ 0.625 0.6277 0.44 0.6295 0.72
tþ 25 25.172 0.69 25.346 1.38
Ct 3.99� 106 3.988� 106 0.04 3.986� 106 0.09

(b) Solution found using the negative sign in (48)
wb� 0.04 0.0397 0.72 0.0394 1.45
R00
� 0.002 2.014� 10–3 0.69 2.029� 10–3 1.43

k– 0.5 0.4962 0.76 0.4922 1.56
t– 20 19.897 0.52 19.818 0.91
Ct 3.99� 106 3.988� 106 0.04 3.986� 106 0.09
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thermal conductivity k; the relaxation time t ; and the heat capacity of tissue Ct, from both
exact and noisy (for up to p = 0.1% noise) dimensionless boundary temperatures at x [
{0,1}, have been achieved using the MATLAB optimization toolbox routine lsqnonlin. As
for a higher percentage of noise such as 1%, it was found that some relative errors (RE%) of
the recovered dimensional parameters are of about 10% and thus the results for this level of
noise are not presented.

7. Conclusions
In this paper, an investigation into the numerical retrieval of five constant thermo-physical
parameters arising in a thermal-wave model of bio-heat transfer has been carried out. For
the numerical discretization, an unconditionally stable FDM was used as a direct solver.
Accurate and stable numerical results for the simultaneous reconstruction of the five
constant thermo-physical parameters that are the blood perfusion rate wb, the thermal
contact resistance R00, the thermal conductivity k, the relaxation time t and the heat capacity
of tissue Ct arising in the dimensional thermal-wave model of interest have been
successfully achieved through a minimization procedure based on the MATLAB
optimization toolbox routine lsqnonlin, when both the dimensionless boundary temperatures
at x [ {0,1} are measured for p = 0 and p = 0.1% noise. It was found that the considered
dimensional inverse problem mathematically admits two solutions; one of which may
correspond to the true thermo-physical properties of the one-layered, one-dimensional tissue
slab considered, as found from the literature Alkhwaji et al. (2012) and Özen et al. (2008).

A possible direction of further work is the determination of the thermo-physical
properties of a multi-layered tissue stratified into epidermis, dermis, subcutaneous and inner
tissue (Özen et al., 2008).
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